abstract of Quantum Selections, Propensities and the Problem of Measurement
en
rdfs:label
Annotations
has text
This paper expands on, and provides a qualified defence of, Arthur Fine's selective interactions solution to the measurement problem. Fine's approach must be understood against the background of the insolubility proof of the quantum measurement. I first defend the proof as an appropriate formal representation of the quantum measurement problem. The nature of selective interactions, and more generally selections, is then clarified, and three arguments in their favour are offered. First, selections provide the only known solution to the measurement problem that does not relinquish any of the explicit premises of the insolubility proofs. Second, unlike some no-collapse interpretations of quantum mechanics, selections suffer no difficulties with non-ideal measurements. Third, unlike most collapse interpretations, selections can be independently motivated by an appeal to quantum propensities. IntroductionThe problem of quantum measurement2.1 The ignorance interpretation of mixtures2.2 The eigenstate--eigenvalue link2.3 The quantum theory of measurementThe insolubility proof of the quantum measurement3.1 Some notation3.2 The transfer of probability condition (TPC)3.3 The occurrence of outcomes condition (OOC)A defence of the insolubility proof4.1 Stein's critique4.2 Ignorance is not required4.3 The problem of quantum measurement is an idealisationSelections5.1 Representing dispositional properties5.2 Selections solve the measurement problem5.3 Selections and ignoranceNon-ideal selections6.1 No-collapse interpretations and non-ideal measurements6.2 Exact and approximate measurements6.3 Selections for non-ideal interactions6.4 Approximate selections6.5 Implications for ignoranceSelective interactions test quantum propensities7.1 Equivalence classes as physical `aspects': a critique7.2 Quantum dispositions7.3 Selections as a propensity modal interpretation7.4 A comparison with Popper's propensity interpretation